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Recent de Haas–van Alphen �dHvA� experiments on high-Tc compounds have been interpreted using
Lifshitz-Kosevich �LK� theory, which ignores many-body effects. However in quasi-2d systems, interactions
plus Landau-level quantization give strong singularities in the self-energy � and the thermodynamic potential
�. These are rapidly suppressed as one increases the c-axis tunneling amplitude t� and/or impurity scattering.
We show that interaction effects should show up in these experiments, and that they can lead to strong
deviations from LK behavior. Moreover, dHvA experiments in quasi-2d systems should clearly distinguish
between Fermi-liquid and non-Fermi-liquid states, for sufficiently weak impurity scattering.
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By tradition de Haas–van Alphen �dHvA� experiments are
interpreted using Lifshitz-Kosevich �LK� theory, in which
magnetization oscillations probe directly the quasiparticles at
the Fermi surface �so that in a non-Fermi liquid �NFL�, with
zero quasiparticle weight on this surface, LK theory implies
no dHvA oscillations at all�. Where applicable, LK theory
allows unambiguous measurement of Fermi-surface cross-
sectional areas, Fermi-surface scattering rates, and Fermi-
surface band masses.1

Even in three dimensions �3d�, LK theory is not strictly
valid because of interactions;2,3 these cause “Engelsberg-
Simpson” �ES� deviations from LK, which are seen in
experiments.4 In two dimensions �2d�, the mere existence of
the fractional quantum Hall liquid �FQHL�, even when the

interaction strength V̄���c, shows that Fermi-liquid �FL�
theory must break down in a field, provided impurity scat-
tering is weak5 �i.e., once �c��1, where �c is the cyclotron
frequency and � an impurity scattering time�.

Thus the dHvA experiments recently performed in
high-Tc systems6 create a clear paradox. Impurity scattering
is weak �it must be for a dHvA signal to be seen� and the
c-axis tunneling amplitude t� is argued to be very small �in
YBa2Cu3O6.5 �YBCO�, t��15 K is claimed�, implying that
��c� t� and the system is reaching the 2d limit. And yet it is
also claimed that the data can be fit using LK theory.6 Simi-
lar LK analyses have been made for other quasi-2d
systems.7,8 Since LK theory must break down for genuinely
2d systems if �c��1 and correlations are strong, this raises
several important questions:

�a� how can one generalize dHvA theory to include inter-
actions in quasi-2d systems, and how should dHvA data then
be analyzed;

�b� what kind of oscillations will be shown by NFL sys-
tems, and can one tell the difference between FL and NFL
states from dHvA experiments?

To address these questions, we first analyze the one-
particle Green’s function G and the thermodynamic potential
� for a quasi-2d system, with t� /��c assumed arbitrary �but
t��	, the chemical potential�. We find that interactions give
highly singular behavior in G, which when t����c and
�c��1 causes a complete breakdown of standard Fermi-
liquid theory. However we still find dHvA oscillations, al-
though not of LK form. To illustrate these results we com-

pute G for two examples: a NFL with singular forward-
scattering interactions, and a FL of band electrons interacting
with nearly antiferromagnetic spin fluctuations. We find clear
departures from LK behavior, whose form depends strongly
on the nature of the many-body interactions; thus dHvA ex-
periments ought to be able to distinguish FL from NFL
states. Neither LK theory nor its “ES” generalisation,3 apply
strictly unless ��c
 t� and/or �c��1.

�i� Singularities of G: the form of the dHvA oscillations
can be found from either ImG���, or directly from �. In
noninteracting 2d systems, the Landau levels are massively
degenerate, and ImG�������−���, where �� is the �th
Landau-level energy. Interactions destabilize this degeneracy,
and so have a singular effect on G���. However any impurity
scattering or c-axis tunneling tends to suppress this
singularity. Although the analytic structures of G��� and �
are now understood for neutral 2d fermions9 in a field �i.e.,
without Landau quantization�, there are no general results
when one has both Landau quantization and interactions.10

However, we can derive results for particular models; here
we study quasi-2d band electrons, with dispersion
�k=��kx ,ky�−2t� cos�kza�−	, where t��	, coupled to
low-energy fluctuations. In a finite field, the lowest-order
“one-fluctuation” graph for the self-energy then takes the
form

���kz,z� = �
q

�
��
� d�

�
������q��2Im��q,��

�� 1 − f�� + n���

z − � − ����qz�
+

f�� + n���

z + � − ����qz�
� �1�

where z is a complex frequency, ��q ,�� is the fluctuation
propagator, f�= f���qz

� is the Fermi function for electrons in
the �th Landau level, n��� the Bose function, and the matrix
element �����q�, between Landau states � ,�� and the fluc-
tuations, incorporates the fermion-fluctuation coupling gq.
When 	��c, ������q��2�gq

2�m /2	�1/2�c /�q. Quite gener-
ally the self-energy for a quasi-2d system can be written near

the Fermi surface as ��z�= �̄�z�+�osc�z�, where �̄�z� is
nonoscillatory in 1 /B, and the oscillatory part
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�osc�z� = 2�
r=1

�

�− 1�r�r�z�J0�4�r
t�

��c
�sin�2�r

AF

B
� . �2�

The Bessel function J0 in this expression comes from inte-
grating over qz.

To illustrate how Landau quantization affects the self-
energy, we begin by analyzing two widely studied models of
strong correlations in quasi-2d systems: in zero field these
describe a FL and NFL, respectively.

Model (a) spin fluctuation model: this well-known
model11 has 2d lattice fermions with dispersion

��kx,ky� = − 2t0�cos kx + cos ky� − 4t1 cos kx cos ky �3�

and coupling t� between planes; the fermions couple to an-
tiferromagnetic spin fluctuations, with propagator

��q,�� =
�0

1 + �2�q − Q�2 − i�/�SF
�4�

via a coupling gq=g. The wave vectors Q= ��� , ���. In
zero field this model, with or without vertex corrections,12

gives FL behavior: the Green’s function has finite Fermi-
surface residue zkF

�	�, and the self-energy has a 2d FL form,
with Re����= �1−m /m��� and Im�����2�1+ln ��.

In a finite field, the one-fluctuation form �1� for ���� can
be evaluated analytically.13 The essential result is shown in
Fig. 1; Landau quantization introduces a “steplike” behavior
in �Im� /��, with corresponding singularities in Re����, at
�=��. Notice how rapidly this singular behavior is sup-
pressed by interplane hopping—it is almost invisible once
t����c. Impurity scattering has a similar effect �not shown
in Fig. 1�.

Model (b) non-Fermi-liquid model: we now couple the
band electrons to fluctuations with propagator,14

��q,�� =
q

�qs − i��
�5�

where s is a dynamic scaling exponent, with 2�s�3, using
a fermion-fluctuation coupling gq=Ks. The zero-field self-
energy has the NFL forms ������ ln � �for s=2� and
������i�0 /��1/3� �for s=3� so that zk���→0 on the Fermi
surface.14 In finite field, the one-fluctuation self-energy �1�
can be found analytically, in the form �2�; the T=0 coeffi-
cients �r�z� are found to be

�r�z� =
sKs

2r2/s	Zr
1/2S2�1

2
+

2

s
,
1

2
;Zr�

− Zr
2/s − �− Zr�1/2S2�1

2
+

2

s
,
1

2
;− Zr� + �− Zr�2/s


�6�

with a more complicated finite T form. Here S2 is a Lommel
function,15 and Zr=2�rz /��c. Now the singular behavior in
� is far more pronounced; again, it is eliminated by switch-
ing on t� �Fig. 1�b��, or by impurity scattering �calculated in
Fig. 1�c� in a self-consistent Born approximation�.

We see that both models show singular behavior of ����
as a function of �, implying similar behavior for the quasi-

particle weight zk���; we expect this behavior to survive ver-
tex corrections.12 At the Fermi energy, ���=	� will then
show the same singular behavior as a function of B, periodic
in 1 /B. Strictly speaking, this means a breakdown of FL
theory for both models, but much more strongly for the NFL
system. Because these singularities are rapidly suppressed by
both interplane hopping and impurity scattering, this break-
down will only be clearly visible when t� ,� /����c.

�ii� Thermodynamic potential �: let us now consider the
two questions posed in the introduction, by considering ��B�
to all orders in fluctuation graphs. If “crossed graphs” can be
ignored in ��z�, we can write an expression for � in terms of
G,16

� = −
1

�
Tr ln��G + Gosc�−1� �7�

where G is the nonoscillatory part of G. This generalizes the
classic Luttinger/ES result3 for �, which drops Gosc from
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FIG. 1. �Color online� The imaginary part Im���� of the
self-energy, as a function of t� /��c, at T=0. �a� shows Im�� /��
for the spin-fluctuation model; we fix gq=g=0.58 eV,
�0=80 states /eV, �=2.5a, and �SF=10 meV. �b� shows Im�
�with no derivative� for the non-Fermi-liquid model, assuming
s=3; we fix Ks=3=0.013���c�2/3	1/3 with 	=6000 K. �c� shows
the effect of impurity scattering on the NFL model; we plot Im����
for different values of �c�, assuming t� /��c=0.75.
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Eq. �7�. This neglect is justified in 3d but not in 2d �Ref. 16�;
in the quasi-2d case it is only justified if t����c. From

Eq. �7� we find �=�̄+2�r=1
� �−1�r��1

r +�2
r�cos�r�AF /eB�,

where �̄ is the nonoscillatory part of �, and

�1
r =

m�ckT

2�r�
�
n�0

J0�4�rt�

��c
�e−2�r/��c��n+���n��

�2
r = −

mkT

�2 �
n�0

J0�4�rt�

��c
��r��n� �8�

where �n= �2n+1��kT, and �r��n�= i�r�i�n� is real and
positive. Equation �8� reduces to the Luttinger/ES expression
for � if we drop �2, and use only the nonoscillatory part

�̄��n� of ���n�= i��i�n� in �1. However Fig. 1 shows that
the oscillatory part of � must not in general be neglected. �1
reduces to LK theory, including the J0 term,18 only if either
����=0, or ����→ �1−m /m���+ i /2�, i.e., a mass renor-
malization and scattering rate both independent of energy.

�iii� Oscillatory magnetization: we write the magnetiza-
tion at constant chemical potential M	�B�=−�� /�B �	 in the

form M =M̄�B�+2�r�−1�rMr, where M̄ is the nonoscillatory
part �M�B� at constant N is found by making a Legendre

transform17�. Differentiating Eq. �8�, we get Mr=M1
r +M2

r ,19

with

Mi
r�B,T� =

�rAF

eB2 �i
r�B,T�sin�r�AF/eB� . �9�

This result is strikingly different from LK and Luttinger/ES
theory, with two oscillatory terms. Key features of Eq. �9�
are:

�1� without interactions, or when �� /�� is negligible, we
get LK theory,

Mr
LK 

kT

sinh�2�2rkT

��c
� J0�4�rt�

��c
�exp�−

r

�c�
� . �10�

However interactions will give clear departures from LK
theory, even in mass plots �Fig. 2�, unless the fluctuation
energy scale ���c, and/or �c�
1. Both M1 and M2 con-
tribute to deviations from LK. However, the two terms com-
pete: M1

r is suppressed exponentially by self-energy correc-
tions, whereas the new term M2

r increases linearly with these.
Thus interactions lead to strong departures from LK, and
NFL have much stronger departures than FL. Thus dHvA
experiments can test for departures from FL theory.

�2� The form of M�B� depends strongly on t� /��c. This
gives a remarkable structure in field plots �Fig. 3�, which is
eliminated by strong impurity scattering �Fig. 2�b�� or by
removing strong correlation effects.
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FIG. 2. �Color online� ln Mr /T for r=1 against T �the “mass
plot”�, for the spin-fluctuation model: �a� plot for different fields,
assuming t�=15 K but no impurity scattering �when B=55 T,
��c=20 K�; �b� plot for different impurity scattering rates, assum-
ing t� /��c=0.6. The dashed lines are fits to LK.
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FIG. 3. �Color online� The dHvA component Mr /J0 for r=1,
against 1 /B �again, if B=55 T, ��c=20 K�, for different values of
t� �measured in K�, with no impurity scattering; we assume
T=1 K. �a� for the spin-fluctuation model; �b� for the non-Fermi-
liquid model with s=3. The dashed line is an example of an LK fit.
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�3� Short-range impurity scattering strongly suppresses
the singular structure from interactions once �c�
1 �see
Fig. 2�b��. Again, M1 and M2 behave differently: M1

r de-
creases exponentially with 1 /�c� �à la Dingle� but M2

r de-
creases approximately as a power law.

Summarizing, we see that interactions have profound ef-
fects on the quasiparticles and the thermodynamics of
conducting systems in high fields, for quasi-2d systems.
These effects are rapidly removed by interplane coupling
�once t����c�, and even more rapidly by impurity scatter-
ing �once �c�
1�.

Consider now the experimental situation. At first glance,
experiments on YBCO fall precisely in the crossover regime;
t��15 K is claimed,6 and 15���c�30 K. However these
results are misleading, because the fits �to LK theory� have
not included the J0 term in Eq. �10�. Revised fits will cer-
tainly change the value of t�, as well as the dHvA frequen-

cies; they should include not only M1
r but also M2

r . It will be
extremely interesting to fit data to different strong-
correlation models, and discriminate between FL and NFL
models. We note that a small or absent M2

r term would sug-
gest the underlying state is FL; a strong M2

r term would
indicate the system is NFL. It will also be interesting to look
more closely at other strongly correlated quasi-2d systems in
high fields. Finally, note that any other experiments, sensitive
to the singular structure we find in G, should show interesting
effects. Obvious examples are c-axis tunneling and SdH ex-
periments in very high fields, but a generalization to a trans-
port theory will be required.
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